Seminario Spatio-Temporal Patterns of the International Merger and Acquisition Network

Contenido web archivado:

Este contenido es para fines históricos y no se le realizan actualizaciones

Opinión
Seminario Spatio-Temporal Patterns of the International Merger and Acquisition Network
Compartir en
Miércoles, Septiembre 6, 2017
Tipo de convocatoria: 
Interna
Profesores
A cargo del profesor Marco Dueñas
Información Banco de la República

SEMINARIO -TEMPORAL PATTERNS OF THE INTERNATIONAL MERGER AND ACQUISITION NETWORK

  • En:Bogotá, Colombia
  • Miércoles, 6 Septiembre 2017 - 12:00pm
  • Expositor/es: Marco Dueñas (Profesor de Economía, Universidad Jorge Tadeo Lozano)
  • Co-autores: Rossana Mastrandrea (IMT School of Advanced Studies), Matteo Barigozzi (Department of Statistics, LSE), Giorgio Fagiolo (Scuola Superiore Sant’Anna, Pisa).
  • Entrada libre. Indispensable inscribirse en el siguiente vínculo: Inscripciones
  • Hora: 12:00 m. (refrigerio) y 12:30 p. m. (inicio del seminario)
  • Tiempo de exposición: 12:30 p. m. a 2:00 p. m.
  • Lugar: Banco de la República, carrera 7 # 14-78, piso 13 (Sala de prensa), Bogotá D.C.
  • Idioma de la exposición: Español
  • Resumen del documento: This paper analyses the world web of mergers and acquisitions (M&As) using a complex network approach. We use data of M&As to build a temporal sequence of binary and weighted-directed networks for the period 1995-2010 and 224 countries (nodes) connected according to their M&As flows (links). We study different geographical and temporal aspects of the international M&A network (IMAN), building sequences of filtered sub-networks whose links belong to specific intervals of distance or time. Given that M&As and trade are complementary ways of reaching foreign markets, we perform our analysis using statistics employed for the study of the international trade network (ITN), highlighting the similarities and differences between the ITN and the IMAN. In contrast to the ITN, the IMAN is a low density network characterized by a persistent giant component with many external nodes and low reciprocity. Clustering patterns are very heterogeneous and dynamic. High-income economies are the main acquirers and are characterized by high connectivity, implying that most countries are targets of a few acquirers. Like in the ITN, geographical distance strongly impacts the structure of the IMAN: link-weights and node degrees have a non-linear relation with distance, and an assortative pattern is present at short distances.

PAra más información consulte http://www.banrep.gov.co/es/eventos/seminario-semanal-economia-bogota-492

¿Qué quieres estudiar?

To prevent automated spam submissions leave this field empty.

Reconocimiento personería jurídica: Resolución 2613 del 14 de agosto de 1959 Minjusticia.

Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional.